World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

The Impact of Temperature Resolution on Trajectory Modeling of Stratospheric Water Vapour : Volume 14, Issue 21 (24/11/2014)

By Wang, T.

Click here to view

Book Id: WPLBN0003980273
Format Type: PDF Article :
File Size: Pages 28
Reproduction Date: 2015

Title: The Impact of Temperature Resolution on Trajectory Modeling of Stratospheric Water Vapour : Volume 14, Issue 21 (24/11/2014)  
Author: Wang, T.
Volume: Vol. 14, Issue 21
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Randel, W. J., Schoeberl, M. R., Dessler, A. E., Kim, J., & Wang, T. (2014). The Impact of Temperature Resolution on Trajectory Modeling of Stratospheric Water Vapour : Volume 14, Issue 21 (24/11/2014). Retrieved from http://www.hawaiilibrary.net/


Description
Description: Texas A&M University, College Station, Texas, USA. Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapour (H2O) in the stratosphere, in which the tropical cold-point temperatures regulate H2O amount entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL) is of great importance for trajectory studies. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective-Analysis for Research and Applications), only provide temperatures with ~1.2 km vertical resolution in the TTL, which has been argued to introduce uncertainties in the simulations. In this paper, we quantify this uncertainty by comparing the trajectory results using MERRA temperatures on model levels (traj.MER-T) to those using temperatures in finite resolutions, including GPS temperatures (traj.GPS-T) and MERRA temperatures adjusted to recover wave-induced variability underrepresented by the current ~1.2 km vertical resolution (traj.MER-Twave). Comparing with traj.MER-T, traj.GPS-T has little impact on simulated stratospheric H2O (changes ~0.1 ppmv), whereas traj.MER-Twave tends to dry air by 0.2–0.3 ppmv. The bimodal dehydration peaks in traj.MER-T due to limited vertical resolution disappear in traj.GPS-T and traj.MER-Twave by allowing the cold-point tropopause to be found at finer vertical levels. Despite these differences in absolute values of predicted H2O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that the finite resolution of temperature has limited impact on predicted H2O in the trajectory model.

Summary
The impact of temperature resolution on trajectory modeling of stratospheric water vapour

Excerpt
Liu, Y. S., Fueglistaler, S., and Haynes, P. H.: Advection-condensation paradigm for stratospheric water vapor, J. Geophys. Res., 115, D24307, doi:10.1029/2010jd014352, 2010.; Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C., Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russell III, J. M., and Waters, J. W.: An atmospheric tape recorder: the imprint of tropical tropopause temperatures on stratospheric water vapor, J. Geophys. Res., 101, 3989–4006, 1996.; Ploeger, F., Konopka, P., Günther, G., Grooß, J.-U., and Müller, R.: Impact of the vertical velocity scheme on modeling transport across the tropical tropopause layer, J. Geophys. Res., 115, doi:10.1029/2009JD012023, 2010.; Ploeger, F., Fueglistaler, S., Grooß, J.-U., Günther, G., Konopka, P., Liu, Y. S., Müller, R., Ravegnani, F., Schiller, C., Ulanovski, A., and Riese, M.: Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL), Atmos. Chem. Phys., 11, 407–419, doi:10.5194/acp-11-407-2011, 2011.; Randel, W. J. and Jensen, E. J.: Physical processes in the tropical tropopause layer and their role in a changing climate, Nat. Geosci., 6, 169–176, doi:10.1038/ngeo1733, 2013.; Randel, W. J., Wu, F., Oltmans, S. J., Rosenlof, K. H., and Nedoluha, G. E.: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures, J. Atmos. Sci., 61, 2133–2148, doi:2.0.CO;2>10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2, 2004.; Randel, W. J., Wu, F., Vömel, H., Nedoluha, G. E., and Forster, P.: Decreases in stratospheric water vapor after 2001: links to changes in the tropical tropopause and the Brewer–Dobson circulation, J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744, 2006.; Schoeberl, M. R., Dessler, A. E., Wang, T., Avery, M. A, and Jensen, E.: Cloud Formation, Convection, and Stratospheric Dehydration, Earth and Space Science, doi:10.1002/2014EA000014, 2014.; Read, W. G., Lambert, A., Bacmeister, J., Cofield, R. E., Christensen, L. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fetzer, E., Froidevaux, L., Fuller, R., Herman, R., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Kelly, K., Knosp, B. W., Kovalenko, L. J., Livesey, N. J., Liu, H. C., Manney, G. L., Pickett, H. M., Pumphrey, H. C., Rosenlof, K. H., Sabounchi, X., Santee, M. L., Schwartz, M. J., Snyder, W. V., Stek, P. C., Su, H., Takacs, L. L., Thurstans, R. P., Vomel, H., Wagner, P. A., Waters, J. W., Webster, C. R., Weinstock, E. M., and Wu, D. L.: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation, J. Geophys. Res., 112, D24S35, doi:10.1029/2007JD008752, 2007.; Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA – NASA's modern-era retrospective analysis for research and applications, J. Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1, 2011.; Schoeberl, M. R. and Dessler, A. E.: Dehydration of the stratosphere, Atmos. Chem. Phys., 11, 8433–8446, doi:

 

Click To View

Additional Books


  • Clarification on the Generation of Absol... (by )
  • Atmospheric Waves as Scaling, Turbulent ... (by )
  • Diagnosing the Transition Layer in the E... (by )
  • A Parameterisation for the Activation of... (by )
  • An Evaluation of the Sage III Version 4 ... (by )
  • Constraining the Total Aerosol Indirect ... (by )
  • Modeling the Regional Impact of Ship Emi... (by )
  • Observations of Hydroxyl and Peroxy Radi... (by )
  • Joint Analysis of Continental and Region... (by )
  • Optical Extinction by Upper Tropospheric... (by )
  • A Daytime Climatological Distribution of... (by )
  • New-particle Formation Events in a Conti... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.