World Library  
Flag as Inappropriate
Email this Article

Guided bone and tissue regeneration

Article Id: WHEBN0015789647
Reproduction Date:

Title: Guided bone and tissue regeneration  
Author: World Heritage Encyclopedia
Language: English
Subject: Barrier membrane, Dental implant, Periodontology, Debridement (dental), Gingivectomy
Publisher: World Heritage Encyclopedia

Guided bone and tissue regeneration

Guided bone and tissue regeneration

Guided bone regeneration or GBR, and guided tissue regeneration or GTR are dental surgical procedures that use barrier membranes to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics or prosthetic restoration.

GBR is similar to guided tissue regeneration (GTR) but is focused on development of hard tissues in addition to the soft tissues of the periodontal attachment. At present, guided bone regeneration is predominantly applied in the oral cavity to support new hard tissue growth on an alveolar ridge to allow stable placement of dental implants. Bone grafting used in conjunction with sound surgical technique, GBR is a reliable and validated procedure.[1]


Use of barrier membranes to direct bone regeneration was first described in the context of orthopaedic research 1959.[2] The theoretical principles basic to guided tissue regeneration were developed by Melcher in 1976, who outlined the necessity of excluding unwanted cell lines from healing sites to allow growth of desired tissues.[3] Based on positive clinical results of regeneration in periodontology research in the 1980s, research began to focus on the potential for re-building alveolar bone defects using guided bone regeneration. The theory of Guided tissue regeneration has been challenged in dentistry. Most frequently by [4]


Four stages are used to successfully regenerate bone and other tissues, abbreviated with the acronym PASS:[5]

  1. Primary closure of the wound to promote undisturbed and uninterrupted healing
  2. Angiogenesis to provided necessary blood supply and undifferentiated mesenchymal cells
  3. Space creation and maintenance to facilitate space for bone in-growth
  4. Stability of the wound to induce blood clot formation and allow uneventful healing


The first application of barrier membranes in the mouth occurred in 1982[6][7][8] in the context of regeneration of periodontal tissues via GTR, as an alternative to resective surgical procedures to reduce pocket depths.[5][9]

Several surgical techniques have been proposed regarding the tri-dimensional bone reconstruction of the severely resorbed maxilla, using different types of bone substitutes that have regenerative, osseoinductive or osseoconductive properties. In cases where augmentation materials used are autografts or allografts the bone density is quite low and resorption of the grafted site in these cases can reach up to 30% of original volume. For higher predictability, nonresorbable titanium-reinforced d-polytetrafluoroethylene (d-PTFE) membranes—as a barrier against the migration of epithelial cells within the grafted site—are recommended. In patients with systemic problems interdisciplinary collaboration is indicated to adjust therapy background so that it does not adversely affect implanto-prosthetic treatment.[10]


There are several uses of bone regeneration:

See also


  1. ^ P
  2. ^
  3. ^
  4. ^ [1]
  5. ^ a b
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^ (webpage has a translation button)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.